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speed of chemical waves
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< |
> = When a travelling wave of chemical reaction is supported by isothermal
@) U—l autocatalysis, the speed of the wave depends on the way in which reaction rate
= depends on concentration as well as on the maximum rate attainable. For systems
=0 with quadratic and cubic autocatalytic processes mixed in the ratio v:(1—v), the
E 8 wave speed c is given by

¢c=1/[20—v)F, for 0<w<l,

¢ = (2v), for $<v<,

with a smooth change between these solutions at v = 1,¢ = 1. Thus, there is a factor
of 2 in the wave speed in going from pure cubic (v = 0) to pure quadratic (v = 1). The
selection of the permanent form travelling wave is discussed in terms of the phase
plane.
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1. Introduction

The passage of relatively sharp reaction front, say, down a test tube of previously
mixed reactants is a relatively familiar phenomenon (Showalter 1987). A common
feature of all reactions showing such behaviour is that the chemistry displays some
form of feedback, typically autocatalysis, so that the reaction intermediates or
products increase the rate at which the initial species are consumed. In this paper we
consider the propagation of a one-dimensional wave front in systems with
combinations of quadratic and cubic autocatalysis, paying particular attention to
the variation of the observed wave speed with the relative contributions of the two
processes. The latter can be discussed in terms of the ‘shape’ of the autocatalytic
function via suitable ‘weighting’ of the two contributing processes.

=

> E 2. Autocatalysis

8 2 Autocatalytic processes are characterized by (overall) reaction rates that increase
o) 5 with increasing extent of reaction; at least over the earliest stages of the evolution
T O (Gray & Scott 1990). This feature is most clearly revealed by plotting the reaction
~ rate against the initial reactant concentration or the extent of reaction, as shown in

figure 1. Empirically, two limiting forms typically arise: an approximately parabolic
locus for which the reaction rate increases most quickly with the extent of reactant
consumption in the earliest stages and a cubic-form curve for which the reaction rate
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Figure 1. The variation of the shape of the autocatalytic function with the degree of mixing of cubic
and quadratic processes: (¢) v = 0, pure cubic; (b) v = , equal mixing; (¢) v = 1, pure quadratic.

rate

increases only slowly at first but then rises more steeply at, say, 50% reaction.
The former can often be successfully mimicked by a quadratic function: if the
stoichiometric process is A—> B, then the rate at any stage can be represented as
kyab, where a and b are the concentrations of the reactant and product species.
The cubic form can similarly be fitted in this empirical sense by a rate law of the
form k, ab®. These two autocatalytic representations have also often been  visualized’
in the mass-action form:

quadratic autocatalysis A+B->2B, rate = k ab®
cubic autocatalysis A+2B->3B, rate =k, ab®

In many °‘real’ systems, apparently more complex forms can be successfully
represented as some linear combination or mixing of these two idealized extremes.

The shape of the rate function varies with the ‘order’ of the autocatalysis, and it
is the influence of this changing shape on the reaction—diffusion wave properties of
the system that we seek to examine in this paper. There is also another effect which
we must first eliminate; that of changing area under the curve (i.e. of the average
reaction rate). To allow for this, we first transform the equations to dimensionless
form. For this we require a concentration and a chemical timescale. For the
concentration base we take the initial concentration g, of the reactant A. Thus the
dimensionless concentration a« = a/a, starts at unity and decreases to zero at complete
conversion. Noting also that in the absence of subsequent reaction, the concentration
of the autocatalyst at any time can be related immediately to the difference between
the initial and instantaneous reactant concentration, b = a,—a or, in dimensionless
terms, by (1—a). For the chemical timescale ¢, we consider first a purely cubic
autocatalytic system. The dimensional equation has

—da/dt = k,a(a,—a)®. (1)

A natural timescale can be found based on the pseudo-first-order rate constant i} =
k,al. With then 7 = {/t,,, the equation becomes

—da/d7 = a(l —a)% (2)
Integrating this, the area under the curve between a = 0 and 1 has the value 3.

Phil. Trans. R. Soc. Lond. A (1991)
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For pure quadratic autocatalysis, we can use the chemical timescale ¢, = 2k, a, to
obtain the dimensionless equation

—da/dr = {a(l —a). (3)

This also gives an area under the rate against a curve of &. (It is for this reason that
we introduce the factor 2 into ¢,, and, hence, of } into the rate function.)

With an arbitrary mixture of cubic and quadratic autocatalysis, the dimensionless
rate equation can be written as

—do/dr = (1 =v) (1 —a)?+Lva(l —a), 4)

where v = 2k, /(k, a,+2k,) is the ‘mole fraction’ of the quadratic contribution and
0 < v < 1. The area under the curve is still the same as for the two limiting cases,
irrespective of v. This form reduces smoothly to the pure cubic and quadratic
extremes in the limits k; —~0,v = 0 and k,—0,v = 1 respectively.

3. Reaction—diffusion systems

We imagine an infinitely long, thin reaction domain extending in the limit from
x' =—o0 to ' =+ o0, where &’ is the spatial coordinate. Reaction will be initiated
by ‘seeding’ the system with some autocatalyst B at @’ = —o0 at t = 0. We seek
now to establish the existence and form of any permanent form travelling waves
that develop (typically after some initial transient evolution). The governing
reaction—diffusion equations for the general combination of both autocatalytic
processes can be written in the form

da/0t = D %a/0x"® —k,ab®—k ab, (5a)

0b/ot = DO*/0x’* + k,ab®+k ab. (5b)

These can be combined after an initial transient phase using the relation b =
(ay—a) as described above. The boundary conditions ahead of the wave (#'— + )

have a = a,,b = 0 and 0a/0x" = 0b/0x" = 0; behind the wave (' ——00) is the fully
reacted state @ = 0,b = a, with, again, 0a/0x" = 0b/dx’ = 0.

4. Purely cubic autocatalysis: £, = 0

The reaction—diffusion equation for a system with only the cubic rate law can be
written in the form

Oa /01 = *a/02® —a(l —a)?, (6a)

with
a=0,0a/dx=0 at x=—c0 and a=1,00/0x=0 at xz=+4o00, (6b)
where the dimensionless time 7 and distance x have been scaled with respect to the
chemical timescale discussed in §2: 7 =t/t,,, ® = «'(Dt,,)"%. If a permanent form
travelling wave with velocity ¢ exists, it is convenient to transform into travelling

coordinate frame, introducing z = x—cr. Equation (6) then takes the ordinary

differential form
d%e/dz? +cda/dz—a(l—a)® =0, (Ta)

with
a=da/dz=0 at z=—00 and a=1,da/dz=0 at x=+0. (7b)
Phil. Trans. R. Soc. Lond. A (1991)
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Figure 2 Figure 3
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Figure 2. The gradient-concentration phase plane for pure cubic autocatalysis showing the outset
S, from the saddle (0, 0) and the inset S, to the stable node at (1,0): these join to form the solution
path. Other trajectories approach (1,0) along the centre manifold CM tangent to the o axis.

Figure 3. The cubic wave solution, showing the maximum gradient at « =1,z = 0.

A suitable approach to solving this equation is to ‘guess’ that the concentration
gradient da/dz has a parabolic form da/dz = ka(1 —a), where k (like ¢) is some
constant to be determined. Differentiating this assumed form gives d%x/dz? =
k(1 —2a) (da/dz) = k?a(l —a)(1—2a). If these two are now substituted into the
governing equation, we obtain

ol —o) (1 —20) + cka(l —a)—a(l —a)? = 0. (8)
After cancellation of the common factor a(l —a), this leaves the condition
k(k+c¢)—1—(2k*—1)a = 0. (9)

If this relation is to hold for all values of «, then we require 2k*—1 =0 and
k(k+c)—1 =0, giving k=c=1/4/2. Figure 2 shows the appropriate (a,do/dz)
phase-plane with the parabolic connection from (0, 0) to (1,0) corresponding to the
initial and final conditions. The wavefront itself is shown in figure 3 and is given, by
integration of the gradient equation, as

(1—a) = exp (—2/v/2)/[1+exp (—z/v/2)]. (10)
The maximum gradient occurs exactly half way along the wave and has the value
(dot/d2) ey = 1/4/32.

The permanent form travelling wave solution derived above is typically confirmed
by numerical computation of the full initial-value problem, almost independent of
the exact manner in which the wave is initiated in such studies. It is, however, not
the only travelling wave solution. Billingham & Needham (1991 a) have shown that
even for this case there is another (infinite) family of waves that satisfy the above
equation. These solutions and their origin are best discussed against the framework
of the phase-plane mentioned above and shown in figure 2.

The phase plane shows how the concentration o and the gradient de/dz vary with
respect to each other along the wave. The governing equation (7) can be rewritten as
two first-order ordinary differential equations:

do/dz = u,
du/dz = —cu+oa(l —a)?

—
—
—
S

~ ~—

Phil. Trans. R. Soc. Lond. A (1991)
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A ‘solution’ to the reaction—diffusion equation corresponds to a ‘path’ or ‘trajectory’
across the phase plane, starting from the initial point (0,0) and entering the final
point (1,0) as z increases. These initial and final points are singularities of the phase
plane, as both da/dz and du/dz (=d2x/dz?) are zero together at these points. The
‘local stability ’ of the singularities can be determined by examining the eigenvalues
of the jacobian matrix corresponding to the phase plane equations. This shows that
the ‘starting point’ (0, 0) is a saddle point, with an outset S; pointing in the direction
o > 0,4 = da/dz > 0. The singularity at (1, 0) is a node, but has a degeneracy as one
of the eigenvalues is zero. Examination of the trajectories close to the node shows
that there is a unique invariant stable manifold S, that approaches (1,0) from
o < 1,u > 0, whereas all other trajectories arrive at the singular point along a centre
manifold that is tangent to the « axis.

The trajectory corresponding to the ‘minimum’ velocity solution derived above is
the path that leaves (0,0) along the outset S, and enters (1,0) along the invariant
stable manifold S; (this outset and inset do, in fact join to make the solution path).
This is, in this sense, a special case. Other trajectories that also correspond to
solutions enter (1, 0) along the centre manifold. There are an infinite number of these,
and their velocities span the range 1/4/2 < ¢ < oo0. Billingham & Needham have
discussed the question of which of these various solutions will actually be selected in
a given case. They conjecture that the special case of the minimum velocity will be
selected by any system for which the initial concentration of the autocatalyst
decreases with x more quickly than the inverse form fB(x,0) < (1/4/2) 27!, but that if
B(x,0) = o/x with o > 1/4/2, one of the faster waves, with velocity ¢ = o will
develop.

Finally, in this section, the case in which A and B diffuse with different coefficients
has been considered by Billingham & Needham (1991b). They show that a similar
overall structure to that described above arises for the special case D = D, = Dg.
With D, # Dy, there is again a minimum velocity wave with speed c;, that depends
on the ratio Dy/D,. This minimum velocity can only be obtained numerically,
but ¢, tends to zero as Dy/D,—0 and grows as Dy/D, increases (growing as
Cmin ~ 0.8624/(Dy/D,) for Dy/D, > 1).

5. Purely quadratic autocatalysis: £, = 0

For a system with simple quadratic autocatalysis, the dimensionless reaction—
diffusion equation in travelling wave coordinates has the form

d%e/dz? +cdo/dz—2a(1 —at) = 0. (12)

The method of assuming a parabolic gradient does not work in this case, and the
system is most easily examined in the phase plane ua (where u = da/dz):

da/dz = u, (13a)

du/dz = —cu+3a(l—o). (13b)

There are again two singularities in the phase plane (figure 4): (x,u) = (0,0) and
(1,0). The origin is a saddle point, and the system will depart from this along the

outset into the positive quadrant. The singularity at (1,0), corresponding to the
condition ahead of the wave, has eigenvalues determined by the roots of

A2+cA+1=0, (14)
Phil. Trans. R. Soc. Lond. A (1991)
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Figure 4 Figure 5
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u ' «
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Z
Figure 4. The phase plane for the pure quadratic wave showing the minimum velocity solution. The
dotted parabola gives the locus of maxima and minima.

Figure 5. The minimum velocity quadratic wave solution.

ie. At =Y+ [c2—2]. (15)

For any wave speed ¢ = 1/2, the eigenvalues are real and negative, so the singularity
is a stable node. The important point here is that the trajectory approaches (1,0)
from v > 0 and a < 1, satisfying the physical requirement that & < 1 (with & > 1, the
corresponding concentration of the autocatalyst will be negative). If ¢ < 4/2, the
singularity is a stable focus and trajectories approach (1,0) via damped oscillations
during which a > 1.

Thus, there is an infinite family of possible wave solutions, and a minimum
velocity ¢, = 4/2. The minimum velocity has particular significance, and is that
typically observed from direct numerical integration of an initial-value problem for
the reaction—diffusion equations. For this solution with ¢ = ¢,;,, the singularity at
(1,0) is a degenerate stable node, with A* = A~ = 1/4/2. Merkin & Needham (1989)
have paid particular attention to the problem of selection of wave velocity from the
infinite spectrum of solutions. They have shown, that for typical initial conditions
(compact support), the wave speed is controlled by a small, weak diffusion region
propagating ahead of the actual wavefront. It is this that selects the minimum
velocity from the family above. The resulting wave profile (figure 5) is not symmetric
but has its maximum slope (%y,, = 0.0872) at o = 0.5575.

By considering the more general case in which that species A and B have unequal
diffusion coefficients, Billingham & Needham (1991b6) have shown that it is the
diffusion of the autocatalyst that determines the wave speed. They obtained for the
dimensionless minimum velocity ¢, = v/ (2Dg/D,), giving dx’/dt = (2Dy k, a,):.

6. Mixed cubic and quadratic autocatalysis

To consider the general case of mixed cubic and quadratic processes, we non-
dimensionalize equation (5) following the arguments of §2:

Oa/0r = Pa/0x*— (1 —v) (1l —or)? + v (1l —a). (16)
The governing equation can again be written in travelling wave coordinates :

d?a/dz*+cdo/dz— (1 —v)a(l —a)? +va(l —a) = 0 (17)
Phil. Trams. R. Soc. Lond. A (1991)


http://rsta.royalsocietypublishing.org/

\
\
8 \
i

a
//\

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
A \
)

[

y 9

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Awutocatalytic influence on chemical wave speed 255
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Figure 6. Dependence of the wave velocities ¢, and ¢, on the degree of mixing v, showing the
change in observed solution at v = 1.

with, again, the phase-plane representation :
doe/dz = u, (18a)
du/dz = —cu+ (1 —v)a(l —a)®+va(l —a). (18b)

Both the ‘cubic’ method of assuming a parabolic gradient and the ‘quadratic’
approach of examining the nature of the stable singularity can be applied to these
equations.

(@) Cubic method

We assume that the gradient de/dz is related to the concentration by the parabolic
form da/dz = ka(1—a), where k has to be determined. Proceeding as before, we
obtain for the wave speed

&) =1/[2(1-v)k (19)
The wave profile for this solution is again the symmetric form (10).

(b) Quadratic method

Examining the phase plane singularity at (1,0), we find that the eigenvalues are
given by A* =}{—ct [¢2—2v]3}, so wave solutions may exist for all ¢ > c,(v), where

cy(v) = (2v)k. (20)

(¢) Choice of solution

The dependence of ¢, and ¢, on v is shown in figure 6. The two loci touch
tangentially at v =1 (and with ¢, = ¢, = 1), with the cubic type wave speed lying
above the quadratic type wave speed for all other v. As v tends to zero, we find ¢, -
1/4/2 and ¢, 0. The former accords with the behaviour determined in §6a above,
so we expect the ‘cubic’ form solution to be dominant at this (pure cubic) limit. At
the other extreme, with v—1, we have ¢,—> o0 and ¢,—~>+/2. The latter is the
minimum velocity solution for pure quadratic autocatalysis, so we expect the
‘quadratic’ type analysis to be appropriate at this end. Clearly then, the system is
switching from one branch in figure 6 to the other as v increases. This crossing can

Phil. Trans. R. Soc. Lond. A (1991)
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only occur smoothly at the point of tangency at v = 4, i.e. for the case in which cubic
and quadratic processes make exactly equal contributions. Numerical computation
confirms that the wave speed observed typically is given by

Cops = ¢, for 0<v<i (21a)
Cops =€, for i<v< 1. (21b)

Some further information concerning the changeover in the observed solution is
given in the Appendix. This aspect has also been discussed by Hadeler & Rother
(1975).

In dimensional terms, we can note a significant difference between the cubic type
and quadratic type wave speeds. For v < 1, the system chooses the cubic wave speed
¢;, equivalent to

da’/dt = (3Dk, a2)¥(1 + 2k, / k. ay), (22)

whose numerical value depends on both autocatalytic processes. For v >3, the
system chooses the quadratic wave with speed c,, giving

da’/dt = 2Dk a,): (23)

for all values of k, and k,. Thus the quadratic wave travels essentially independent
of the cubic contribution.

7. Discussion and conclusions

In the above sections we have examined the structure of reaction—diffusion wave
propagation in isothermal autocatalytic systems. The ‘classic cases’ of pure cubic
and pure quadratic processes support such waves, with dimensionless speeds of 1/4/2
and +/2 respectively. ‘Mixed’ systems have a wave speed that varies smoothly
between these values depending on the relative strengths of the two channels. The
normalized weightings of the two autocatalytic processes used here thus show that
the influence of the ‘shape’ of the autocatalytic function is to increase the natural
propagation velocity by a factor of 2 as cubic is replaced by quadratic autocatalysis
(but in such a way as to maintain a constant average reaction rate for the whole
system). Thus, shifting more of the area under the rate against concentration curve
to lower extents of reaction (higher a) allows a faster wave solution.

Other variations in the mixing of the two processes can be imagined. If a constant
cubic contribution is taken and the quadratic channel increased from zero, so
increasing the total overall chemical rate, v will again increase from 0. The wave
speed then, at first, increases linearly with the quadratic contribution; due to the
factor (1+2k,/k.a,) in equation (22). Once the system with equal contributions
(v = %) has been passed, the wave speed becomes independent of the cubic form and
grows as the square root of the quadratic rate constant according to equation (23).
On the other hand, if we maintain a fixed quadratic contribution and increase the
cubic channel from zero, then there is no change in wave speed until v has decreased
to 3. After that, the wave speed increases with the increasing value of k,, again finally
growing as the square root.

The variation in wave speed also is mirrored in the variation of the ‘thickness’ of
the reaction wave front. We can represent the wave thickness by considering the
maximum gradient u,,, as a function of v. For pure cubic autocatalysis, u,,,, =

max
1/4/32, with the maximum gradient occurring exactly at 50% consumption. The

Phil. Trans. R. Soc. Lond. A (1991)
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position of the maximum slope stays at a =} for all of the symmetric ‘cubic type’
waves that are observed for v < 3, with the maximum gradient decreasing as u,,,, =
11(1—»)]t. Thus the equal contribution case, with » = 1, has a maximum slope of 1,
lower than that for pure cubic by a factor 1/4/2. We may note that this decrease in
wave sharpness exactly offsets the increase in wave speed. This is generally the case.
To a fixed observer, therefore, the wave takes the same time to pass for all systems.
For v > 1, there is no analytical solution for the wave profile. The maximum gradient
now moves away from o =}, to higher values of «, tending to the pure quadratic
location a = 0.5575 as v—1. The maximum gradient decreases smoothly from 3 at
v=131t00.0872 at v = 1.

The smooth dependence of wave speed on the degree of mixing of the two channels
described above does, however, involve some intricate detail. Until recently, the pure
cubic and pure quadratic cases were thought to have quite different structure. The
classic quadratic ‘ Fisher—Kolmogorov’ case was known to allow an infinite number
of wave solutions (Luther 1906, 1987; Fisher 1937; Kolmogorov et al. 1937;
Showalter & Tyson 1987), with a minimum speed solution emerging naturally in all
computations, although no analytical solution could be (or has yet been) found. The
pure cubic case allows an analytical solution for both the wavefront and its speed and
this was thought to be a unique solution. A related analytical solution also exists for
the mixed cases (Saul & Showalter 1985). However, in all these cases there is also an
infinite family of waves, with velocities equal to or greater than some minimum, and
there are similar problems of selection of a particular solution in a given case. As
shown above, and in more technical detail in the appendix, ‘normal’ initial data lead
to the selection of the ‘cubic type’ wave for systems in which the cubic route is
dominant (v <1) and to the ‘quadratic type’ when v > 1. These two solutions are
equivalent for the case of equal mixing, v =3}, at which the change-over occurs
smoothly. With v < §, the system cannot select its minimum velocity solution (which
would have a quadratic type form) because the concentration of the autocatalyst
becomes negative for such low speeds: the cubic type wave has a wave speed that is
equal to the lowest quadratic wave velocity such that £ does not become negative,
but has some qualitative differences (most notably with respect to the rate of
exponential decay of small perturbations) from the quadratic type solutions. The
pure cubic solution has an additional complexity in that its phase plane structure has
a degenerate node with a zero eigenvalue, giving rise to a centre manifold along
which all the allowable quadratic type solutions enter. This zero eigenvalue causes
such solutions to change from exponential to an algebraic decay of perturbations
(but this applies only in the case v = 0).

We are extremely grateful to Dr D. J. Needham (University of East Anglia, U.K.) and Professor
J. H. Merkin (Leeds University, U.K.) for much helpful discussion and information concerning the
behaviour of the system discussed above — in particular the form of figure 7 in the Appendix — and
to NATO for financial support (S.K.S., K.S. grant no. 89/0124).

Appendix

Figure 7 sketches the important features of the phase-plane and how these develop
with the wave speed for the three representative cases: v > 1 v =13 and v > . The
most significant points are the saddle point at (0,0) and the stable node/focus at
(1,0). When the latter is a stable node, the associated eigenvectors describe two paths
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Figure 7. Evolution of the phase plane with wave speed for (a)—(c) v > }; (d)—(f) v =1%; (9)-(k)
v <% (See text for details.) (a), (d), (9) ¢ <cy; (b), (e) c=cyy = cnpys () c=cy; (¢) ¢>
(1') Csp <c< Cmin; (J) ¢= Cmin; (k) c> cmin'
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or ‘insets’ that are straight lines locally to the node (but that then traverse across
the phase plane). It is the relation of these insets to the connection from the origin
to (1,0) that determines the nature of wave selected and the allowable speeds.

To begin, we examine the case with v > §. At the lowest wave speeds, figure 7a, the
singularity at (1,0) is a stable focus. The local paths wind in to this point and so
traverse regions of the phase plane for which « is greater than unity. Such
dimensionless reactant concentrations would imply negative concentrations of the
autocatalyst and so are not acceptable. As ¢ is increased to some value cg,, the spiral
focus gives way to node. Exactly at cg,, the node has two equal, real eigenvalues and
so it is degenerate. There is a single local straight line path (heavy line) as shown in
figure 7b. All other local paths approach the node along this eigenvector (dashed
lines). The reaction wave trajectory originating from (0, 0) also approaches along this
path, and moves onto the node with o approaching unity from below. Thus, there is
an allowable connection between the singular points as soon as the focus changes to
a node. If the wave speed is increased further, the node becomes non-degenerate and
the two eigenvectors split, figure 7¢. All local paths, including the connection from
the saddle at (0,0), approach the node along (and from underneath) the lower
straight line path (that with the less negative eigenvalue) and hence « does not
exceed unity at any point. The development of the eigenvalues associated with the
stable node is shown in figure 8a. These are born as a real pair at ¢ = ¢y, and then
separate. The exponential decay of small perturbations to the wave front is governed
by the less negative root as described above.

For the special case v = §, we again have a spiral for ¢ < ¢y, and a degenerate node
for ¢ = ¢y, as indicated in figure 7d, e. In this case, the local straight line path into
the node corresponds exactly to the connection to the saddle at the origin. This still
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Figure 8. Variation of eigenvalue governing the exponential decay of perturbations ahead of the
wave front with wave speed: (a) v > 1, the wave solution emerges at ¢, = c,,;, and evolves along
the lower branch; (b) v <1, the eigenvalues become real at ¢ = ¢, but the wave solution is only
acceptable for ¢ = ¢, for ¢ = ¢, the upper eigenvalue is appropriate but for all larger ¢ the
system evolves along the lower branch.

approaches the node with o remaining bounded by unity, so it is an allowable
solution. With ¢ > ¢, figure 7f, the connection from (0,0) to (1,0) lies between the
two local straight line paths, approaching along the lower of these (from above).

With v <1 there is a significant difference. Although the spiral for ¢ < ¢, (figure
7g) gives rise to a degenerate node at ¢ = ¢y, the single local straight line path
evolves back across the phase plane in such a way as to cut the a axis before the
saddle at the origin. Thus any connection from the saddle is shepherded around the
node and approaches ‘from the other side’, with a passing through unity (figure 74).
Thus there is still no physically acceptable solution. As ¢ increases further, the
degenerate eigenvector splits (figure 7¢) but both local straight line paths evolve to
intersect the « axis before the origin. Only at some higher wave speed, ¢,;,, does an
allowable connection emerge. This occurs when the eigenvector associated with the
more negative eigenvalue passes through (0, 0) (figure 75). For and speed ¢ > ¢y, the
connection from the saddle to the node lies between the two local straight line paths,
and so is bounded by these. An important point is that the final approach is now
along the lower inset, that corresponding to the less negative eigenvalue (figure 7k).
There is thus an abrupt change in the form of the exponential decay between the first
connection (¢ = c¢,,;,) and those with higher velocities, as indicated in figure 8b.
(Notice that the eigenvalues exist for all ¢ > cg,, but there are only allowable
connections for ¢ > ¢, ;,.) This indicates the difference between the special case of the
cubic wave with ¢ = ¢,,;, (=¢, in the main text), which involves one eigenvalue, and
the family of faster waves ¢ = ¢,, which are related to the other eigenvalue and
eigenvector.

As v becomes zero, in the limit of pure cubic autocatalysis, the lower eigenvector
becomes tangential to the a axis, as seen previously in figure 2. The associated
eigenvalue becomes zero and hence the centre manifold with non-exponential decay
arises for the solutions with ¢ > ¢,,;, in this case (only).
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